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FOREWORD 

~ 
This is the summary report on the Booster Attitude Stabilization Network 

Synthesis. This report wa% prepared by Republic Aviation Corporation under 

NASA Contract NAS 8-5016 for the National Aeronautics and Space Administration- 

I Marshall Space Flight Center. The work was administered by Nicholas C. Szuchy 
- -  

of Republic Aviation Corporation, and Mr. Mario H. Rheinfurth and Dr. Helmut 

F. Bauer of the Dynamic Analysis Branch, Aeroballistics Division, NASA-MSFC. 
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ABSTRACT 

3 9  76 
This report presents the impedance synthesis techniques and transfer 

function factoring methods developed for realization of complex compen- 
sation networks for the Saturn Booster. Two major divisions, 1) approxi- 
mation, and 2) realization, result from the systematic approach to the 
synthesis of the shaping network meeting NASA requirements. 
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NOMENCLATURE 

C Capacitor, farads o r  microfarads 

Fts) General voltage transfer function 

Desired over-all compensation transfer function with unity DC 1 
FD - (8) 

1 gain 

FD(S) 

Fti)(s) 

Desired over-all constant resistance ladder network transfer 
function with non-unity DC gain 

Transfer function of the i 
gain; i = 1,2,3. 

th ladder network with non-unity DC 

th 
I Fi(S) Transfer function of i stage of ladder network 

I ladder networks, respectively 
th Fi*, Fi** Modified transfer functions of the i stage of the 2nd and Qrd 

Over-all compensation gain for ladder network to give it unity 
Dc gain 5 

I 

Ki 

L 

LN, D(q 

ml, 2tS) 

n1,2(s) 

PR 

PRNM 

PRM 

PRMR 

Realizability gain for  the i* transfer function, such that Ki 
c 1 

J=I.o I .Re Fi(ji min 

Compensation gain for ith stage of ladder network to give it a 
unity DC gain 

Inductor, henries 

First order transfer function (note: N, D subscript refers to 
numerator or denominator respectively) 

Even part of numerator and denominator, respectively 

Odd part of numerator and denominator, respectively 

Positive real 

Positive real, non-minimum 

Positive real, minimum 

Positive real, minimum resistance 
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CN, D 
QN,D WN,D 

Re 

It  

9 

z 

'a i, 'bi 

'a. 'b 
1, i 

r 

PN, D 

Second order transfer function 

Real part of a complex function 

Richards function used in Bott-Duffin synthesis procedure 

Resistor, ohms 

Laplace variable 

Absolute value of the imaginary part of Z at w = 9, 1Im Z U y )  I 
General admittance function, Y(s)  = Z(s) 

General complex impedance function 

Branch impedances of the ith stage of the ladder network for a 
Unity load resistance 

Branch impedances of the ith stage of the ladder network for the 
actual load resistance of 800 ohms 

Time constant 

Ihmping factor 

Undamped natural frequency 

Angular frequency 

Angular frequency at which Re 1 is a minimum 
F(j4  
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SECTION I 

INTRODUCTION 

Attitude control of space vehicles is generally required to enforce 
a predetermined flight path. The guidance system provides information 
about necessary maneuvering and defines a required attitude for the vehicle. 
With the evolution of large liquid-fueled rocket booster vehicles, additional 
complexities in the problem of attitude stabilization have resulted primarily 
from the effects of fuel sloshing and body bending. (l, 2, Minimizing these 
effects by solely mechanical means normally results in excessive penalties 
in weight and system complexity. However, by introducing phase-shaping 
networks (3) in the stabilization loop, stability problems are resolved 
efficiently while avoiding the penalties previously mentioned. 

Theoretical analysis of the system transfer functions permits the 
determination of stability regions and points of optimum stability required 
for the phase-shaping network. Two major divisions, 1) approximation, 
and 2) realization, result from the systematic approach to the synthesis of 
the shaping network. The approximation area is fundamentally concerned 
with the methods for determining rational functions approximating the re- 
quired performance characteristics of the desired network within the con- 
straints of the appropriate. realizability conditions. Realization techniques 
are then used to find -licit networks that are described by physically re- 
alizable rational functions. Individually then, the divisions each form an 
essential step, which collectively correlated form a technique for the total 
synthesis of the Saturn Booster Attitude Stabilization Network. 

The performance characteristics of the phase-shaping network are 
defined in Reference (2). Through the judicious use of the flexible character 
of the approximation problem, the given attenuation curve is approximated 

1 



by the addition of a finite number of semi-infinite slopes, each of which in 

turn is closely approximated by the attenuation curve of a Butterworth or  
Tschebyscheff function. The interrelationships between the attenuation and 
phase requirements, tolerances, physical realizability, ease of construction 
and alignment are considered individually and collectively in establishing 
the appropriate rational transfer function. 

The realization problem of the shaping network is concerned with the 
purpose of defining a suitable optimum combination of linear, passive, 
lumped networks in order to realize the prescribed rational transfer function. 
Three general synthesis methods are known that will lead to a network con- 
figuration, namely: , 

1) Brune procedure 
2) mrlington procedure 
3) Bott-Duffin procedure. 

The fourth procedure, that of Miyata, is restricted in the sense that 
it cannot realize every realizable impedance; however, it is often useful a6 
an alternative to the Bott-Duffin procedure for obtaining networks without 
transformers. 

The non-uniqueness aspect of circuit-synthesis allows for an infinite 
number of circuits which may have the same response o r  function at specified 
points of access, while still satisfying the requirements at the terminals. 
The synthesis technique used for the Saturn Booster Attitude Stabilization 
Network considers the makeup of the network as a tandem connected sequence 
of constant resistance sections, each one of which imposes constraints on 
the prescribed rational transfer function, Then the required network is 
synthesized by any one of the general procedures, and the network configurations 

containing fewer elements are chosen. Figure 1-1 represents conceptually 
the over-all procedures used for the network synthesis operation. 
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SECTION 11 

APPROXIMATION 

The following items will be discussed in this section 

0 Piecewise linear approximation 
0 Butterworth Polynomials 

. Tschebyscheff Polynomials 
0 Approximation of NASA specification 

A. PIECEWISE LINEAR APPROXIMATION 

By considering an impedance function Z(s), it may be noted that the 
amplitude (magnitude) function I Z (j u) I is an even power of the frequency, 
i. e. 

a i j PN a 
C a b  

1=0 f* - i = O  $ ( ' i ) j = O  Q N (e) (D-1) 
m - k  h <Dh z 'mS n LD('k)!7 QD - 

m= 0 k=O 

Z(S) = 

h=O "Dil 

The m t s  and nts represent the even and odd part, respectively, of the 
numerator and denominator. When s = j w, the m's will be real, while the 

n's will  be imaginary. Separating Zfs) into its even and odd part results i n  

(11-3) 
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J l  

.o r  semi-infinite slopes. Since the transfer function is characterized as a 
quotient of two finite degree polynomials, the mathematical expression for  
the semi-infinite slope approximation must be a rational function. The system 

or  transfer function is constructed from the amplitude specification, then checked 
to see that both amplitude and phase specifications are satisfied. Adjustments 
to the transfer function a re  made in two ways, 1) by modifying semi-infinite 
slope approximations, and 2) by adding particular gain and phase characteristics 
to the derived system function outside the system frequency response require- 
ment. Normally both methods a r e  judiciously used to satisfy the amplitude and 
phase specifications. 

The approximation problem then is the determination of a system function 
that on one hand approximates the given requirement within the specified tol- 
erances, and on the other, is realizable by a network of the desired form. In 
other words, one has to fi t  a realizable rational function to the specified data, 
that is, determine the coefficient of the two polynomials, o r  equivalently, 
determine the zeros, poles, and constant multiplier of the rational function. 
It is also desired that the function be of the lowest possible order so that a small 
number of elements will be required for its realization. The Butterworth 
polynomials and the Tschebyscheff polynomials a r e  known to possess the 
desired properties and consequently a re  used to approximate the magnitude of 
the transfer functions. 

B. BUTTERWORTH POLYNOMIALS 

The magnitude requirement is empirically approximated by semi-infinite 
slopes for which a mathematical expression has to be derived. The choice of 
Butterworth functions is a logical suggestion, because: 

1) 

2) 

3) 

for large values of o t h e  function approaches the 
semi-infinite slope as its asymptote; 
from the theory of filter design their roots are 
known and tabulated; 
they actually f i t  semi-infinite slopes very smoothly 
by a margin of not more than 3 db. 
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The substitution of s = j o into an even polynomial gives a real number, 

while the substitution into an odd polynomial gives an imaginary number, i. e. , 

(II-4) 
2 

Even part of Z(s) I = = Ev Z(s) I = R e Z ( j o )  =U(w ) s = j w  

Odd part of Z(s) = I = j I m z ( j w ) = j  ~(0). (D-5) 

Therefore the amplitude function of Z(s) is described by an expression of 

the form 

C b w  m=O 2m 
L J 

It follows from an examination of the above expression that the asymptotic 
behavior of any physically realizable impedance is characterized by an even 
power of frequency, or 

2 2n lim l Z ( j u ) l  =constantx o 
&!+ 03 

where n is positive or  negative integer. To this corresponds a gain (or 
attenuation) measured in decibels of 

(a-7) 

(E-8) 
A ( W  2 )=IO loglOlz(jm)l 2 = c o n s t a n t + 2 0 n 1 o g ~ ~ w .  

2 If one plots A ((L* ) vs log u- which is conveniently done on semilog paper 
(Bode Plot) - the curve will be a straight line. This straight line, or semi- 
infinite slope, is the asymptote to the curve of the amplitude function, and has 
a slope of 6n  - 
with a finite number of terms, or physically realized by a network with a finite 
number of components. The above considerations therefore limit the available 
semi-infinite slopes only to those including a n  angle of Gn * 

Any other slope cannot be approximated db 
- 20n decade 

with the abscissa. 

The Bode plot of the NASA specification for the phase stabilization 
network is first approximated as a finite number of piecewise linear lines 



The Butterworth function of order 2n is given by 

2 2  2n BZn(u  ) = l + o  . 
For large values of w 

A semi-infinite slope of 6n &/octave, but with a cutoff frequency 
different from unity ( l ) ,  obviously is apprvxlmated by 

( w 2 )  = 1 + (W)2n . 
' w o  2n 

(E-9) 

(11-10) 

(11-11) 

2 The roots of the Butterworth function of BZn( w ) are the 2n roots of 

(-1). This follows directly from noting that the amplitude response 
2 B 2n( w ) and the complex system function T ( j c3) are related by 

2 2  BZn ( w  ) = T ( j w )  T( - jw) .  (11-12) 

2 Defining a new function h (s ) such that 

2 '  h (S ) = T ( 8 )  T (-s), 

it may be noted that 
(II-13) 

2 2 B 2 n ( ~  ) = h ( - w  ). (II-14) 

2 From h (- o ) all that has to be done is to substitute s2 = - o to get 
2 2 

h (8 ). Then h (8 ) is factored into the product T (8)  T (-s). Since the poles 
and zeros of T (8 )  are the mirror images of the poles and zeros of T (-a), i. e. , 
they form symmetrical patterns on the unit circle about the origin in the s-plaae, 
one simply chooses the Hurwitz factors of h(s ) as T(s). 2 

An example w i l l  be used to clarify the above discussion. Consider the 
third order (n = 3) Butterworth response given by 

(LI-15) 



2 1 .'. h (e ) = (II-16) 

I 2 Factoring h (8 ), one obtains 

h (a2) = ( 1 1 

=T(s) T(-s), 
therefore 

1 
T(s) = 3 2 

s + 2 s  +2s+1 

(11-17) 

@-W 

(II-19) 

The poles of T (s) and T (-s) are shown in Figure 11-1. Note that the poles 
of T ( -8)  are the mirror images of the poles of T (s). 

I b 

Figure 11-1. Poles For the Butterworth Function, n = 3 

For a Butterworth response, the poles T(s) T (-e) are the roots of 

( - 1 ) n p  = -1 (11-21) 

= €  jfl(2K-1) K = O ,  1, 2, ..., 2n. (11-22) 
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The distinct s values are then given by 

8 K = €  j n r e ]  for n even 

for n odd 

or  in general, 

K E  2n for K = 0,  1, 2, . . . , 2n. 

Expressing sK as sK = UK + j% the real and imaginary parts are 
9 

given by 

2K-1 
n = S i n ( 7 )  2 '  

2K+ n -1) 
2n T =cos K 

2n UK = sin 

10 

(II-23) 

(11-24) 

(11-25) 

(11-26) 

(11-27) 

It may be noted from the above that all the poles of T(s) T(-a) are located 
on the unit circle in the a-plane, and are symmetrical about both the CY and the 
j u axes. 
right-half plane with T ( -8 )  and the poles in the left-half plane with T(s). To 
simplify the use of the Butterworth functions, T (a) is given in Tables II-1 and 
It-2 for n = 1 to n = 8, in factored form o r  in polynomial form. 

To satisfy the realizability condition, one associates the poles in the 



Table IX-1. Coefficients of Butterworth Polynomials 

1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 

n =  
1 

2 
3 
4 
5 
6 
7 

8 

1 
1.414 1 

2 2 1 

2.613 3.414 2.613 1 

3.236 5.236 5.236 3.236 1 

3.864 . ? . a 4  9.141 7.464 3.864 1 

4.494 10.103 14.606 14.606 10.103 4.494 1 

5.126 13.138 21.848 25.691 21.848 13.138 5.126 1 

Table II-2. Factors of Butterworth Polynomials 

n =  
1 (1+X) 
2 (1 + 1.4142 A +  x2) 
3 (1+X) ( 1 + X + X 2 )  
4 
5 

(1 + 0.7 6 53X+ X2) ( 1 + 1.8 47 7X + X2) 
( 1 + X )  (1 + 0. 618OX+A?) (1 + 1.6lSOX +A? 

6 
7 
8 

(1 + 0.5176A+ X2) (1 + 1,4142X + A2) (1 + 1.9318X + X2) 
(1 +A) (1 + 0.4449X+ A2) (1 + 1.2465A + X2) (1 + 1.8022X + X2) 

(1+0.3896X+?) (1+1.1110X+X2) (1+1.6G30A+A2) (1 i1.9622X+X2) 

C. TSCHEBYSCHEFF POLYNOMIALS 

A rational-function approximation of the desired finite frequency 
specification can often be found by using a particular set of orthogonal 
polynomials known as Tschebyscheff Polynomials of the first kind, defined 
as: 

11 



= cosh (n cosh-' w) I w l  >1 

and possessing the orthogonality relation 

T o  m # n  

(11-28) 

(II-29) 

For n = 0 

co (a) = 1 .  (II-31) 

For n = 1  

c ( w) = cos(c0s -1 0 ) = w. (11-32) 
1 

Higher order Tschebyscheff polynomials are obtained through the recursion 
formula 

Cn( w )  = 2 0 cn ( w )  - cn-2 (0). (II-33) - 

Thus for n = 2 

c2 ( 0) = 2 WC1( 0) - cot w)  (II-34) 

= 2 w  2 - 1 .  (It-35) 

To simplify the use of Tschebyscheff functions, Cn( w)  is given in Table LI-3 

for n = 1 to n = 10. 



Table 11-3. Tschebyscheff Polynomials of Order 1 to 10 

Tn ( w) 
n 

1 

2 

3 

4 

5 
6 
7 

8 

9 
10 

0 
2w 2 -1 

4w3 - 3u 
8 w 4 - 8 w  2 + 1 

1 6 ~ ~ ~  - 2 0 ~  3 + 

32aF - 48u 4 + 18w 2 - 1 
64u7 - 1120 5 + 560 3 - 7W 

128&!8 - 2 5 6 ~ ~  + 160W4 - 3 2 ~  2 + 1 

2560' - 576w7 + 4 3 2 ~ ~  - 1 2 0 ~  3 + 9 0  

5 1 2 ~ ~ ' -  1,2800' + 1 , 1 2 0 ~ ~  - 4000 4 + 50w 2 - 1 

It may be noted from Table 11-3 that the Tschebyscheff function . 

CZn( u 2 ) of order 2n is a polynomial in u2  of highest power 2n, in which 

the coefficients that are chosen to make the function oscillate between plus 
and minus one within the interval -1 < w <+ 1 . For I 0 1  > 1, the function 
assumes rapidly increasing values. 

Applying Tschebyscheff polynomials to the approximation problem results 
2 2  from a consideration of the function 6 Cn ( u), where c is real and small 

2 2 2  compared to 1. It may be noted that E Cn (u) will vary between 0 and 6 

in the interval I w I 5 1. The function 

I 

2 2  2 2  C J w )  = I + €  C n ( w )  (II-36) 

where n is a positive integer, obviously oscillates between 1 and 1 + c 2 , 
within the same interval -1 < u <+ 1. The cutoff of function of this type is 
much steeper than that of the Butterworth functions. 

I 

The roots of the functions C: ( (c' 2, (derived from Tschebyscheff 



functions) a r e  
of Butterworth function of the same order, as shown in Figure 11-2. Each 

root vector is prolonged to its intersection with circles of radii a and b, 
and the points of intersection a re  projected horizontally and vertically on 
the ellipse with the long axis 2b, and the short axis 2a, where 

and may be obtained graphically from the root star 

a = cosh rosin -l (1/€)] 

(11-37) 

b = sinh [ c o s ~ n  -l (l/€)] 

sinh 
BUTTERWORTH 
POLE LOCUS I TSCHEOYSCHEFF POLE LOCUS 

Figure 11-2. Poles for the Tschebyscheff Function, n = 3 

From the above figure it is apparent that the Butterworth approximation is a 

degenerate form of the Tschebyscheff approximation in which the ellipse 
becomes a circle. 

D. APPROXIMATION OF NASA SPECIFICATIONS 

1. General 

This section describes in detail the procedure that was used to 
select a rational function, identifiable as the response function of a realizable 

14 



network which approximates the NASA specified magnitude and phase 
characteristics. The very nature of the way the requirements were defined 
immediately suggested a graphical or semi-graphical technique. The 
approximation problem is solved in a systematic manner, in essentially 
four steps, yet retains the flexibility needed for modifications to do the 
interrelationship between the attenuation and phase requirement. 

First, the giiiii . uu - - A  -I.--- puczoc. --nifimtions _ _ _ _ _ _  are plotted on a decibel 
versus logarithmic frequency scale and angle versus logarithmic frequency 
scale curves. Second, a curve satisfying the attenuation requirement is 
approximated by a succession of straight lines. Third, the corresponding 
mathematical expression is developed. Fourth, the continuous curves re- 
sulting from the mathematical expressions are plotted and checked against 
the attenuation and phase requirements. Then any corrections necessary to 
meet either attenuation o r  phase requirements are used to modify the 
approximating expression and it is again checked against the specification. 
The iterative process converges rapidly to a satisfactory mathematical 
expression. It may be noted that by the use of sufficiently large number of 
straight-line approximations, the approximation to any continuous curve could 
be made as close as required. 

2. NASA Specifications 
Figure II-3 shows the required NASA specification; the boxes 

represent the maximum phase stability requirement while the attenuation is 
indicated by dotted lines, -on a I'Bode plot. 
semi-infinite slopes S, , S2, S3 in  Figure 11-4 limited only to those including 
an angle of 6n db/octave with the horizontal axis. It is evident that, by a 
simple addition of these slopes, the broken line curve A is obtained, which 
may be considered as an approximating curve satisfying the requirements. 

Consider the succession of 

A semi-infinite slope of 6n db/octave, with a cut-off frequency 
different from unity, can be approximated by a Butterworth function of order 
2n of the form 

15 

(11-38) 
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where 
= Butterworth function of order 2n . B2n 

w = frequency in radians 

u0 = breakfrequency. 

The three slopes of Figure 11-4 have angles of -6, 18, and -36 db, and cut- 
off points of 4, 20 and 45 radians, respectively. The correspondiiig iittezmticz 
function is 

The roots of the Butterworth functions are the 2n roots of minus 
one (-1). Table II-1 tabulates all coefficients for Butterworth functions up to 
the eighth order. For synthesis problems it is more convenient to group only 
conjugate complex roots together; they are presented in this fashion in Table 
11-2. Using Table II-2, the transfer function corresponding to I F (j o) I can 2 

be written 

S2 2(0.5) s +  
20 

+ 
-r- - i+1i 0 202 9 9 

2(0. 26lSH < ~ 2(0. 71)s+1 +2(o.s+l 45 452 45 45 452 

(II-39) 

(11-40) 

Since in the present application the phase angle is of importance, 
the phase angle of the above function is plotted and compared with the specification 
as shown in Figure II-5. 

By applying lead, lag and quadradic correction factors outside the 
response of the system, a mathematical representation of the transfer function 
is developed 

17 
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Figure 11-4. Graphical Approximation 
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that satisfies the NASA specifications, as shown in Figure II-6. 

The curve-fitting procedure outlined above gives rise to a 
transfer function which possesses the desired gain-phase characteristics. 
However, it must now be ensured that this function is realizable by a passive 
network. The requirements for this assurance are: 1) the transfer function 

must be stable; 2) the degree of the numerator of the transfer function must 
be less than or equal to the degree of the denominator. The first require- 
ment is ensured by the nature of the curve-fitting procedure. The second 
requirement, however, is not usually met by the function resulting from 
the curve-fitting procedure. The method of meeting this requirement 
consists of adding simple lag-type factors to the transfer function. These 
factors are chosen so that they do not appreciably alter the gain-phase 
characteristics in the region of interest. The transfer function consisting 
of the terms obtained from the curve fitting with the appropriate factors 
for realizability by a passive network appended, is termed the desired 
network transfer function. 

20 
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SECTION III 

REALIZATION . 

It is observed that the character of the NASA requirements requires 
that the desired network transfer function be of high order, i. e. , about ninth 
order. The synthesis of a network realizing a transfer function of this 
complexity becomes quite unwieldy by conventional techniques. An even more 
difficult problem is the determination of the effect of component tolerances on 
the network transfer function. For these reasons the constant resistance 
network approach was chosen. These networks have the property that one 
stage does not load another. Thus, the stages may be separately synthesized 
with component transfer functions that are the desired factors of F6 (8) .  The 

most complex form of these factors is a quadratic over a quadratic, termed 
a biquadratic. 

Of the impedance topologies which may be made to exhibit this constant 
resistance behavior, the ladder configuration was chosen because of the 
following advantages: 

1) relatively low sensitivity of the particular transfer 
function to component tolerances; 

2) desirability of a common ground. 

In order to be realizable in the form of a number of cascaded stages 
of a constant resistance ladder network, the transfer function must be broken 
down into factors which are realizable as passive networks and which possess 
in additlon the following properties: 

1) they must be minimum phase (no zeros in the right 
half plane); 

2) they can have no poles on the imaginary axis; 
3) they must be positive real, non-minimum (PRNM). 
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A s  described in Appendix A,  the necessary and sufficient conditions for a 
rational function (F(s) = N(s) /D(s) ) with real coefficients to be positive real 
non-minimum are that F(s) has no right half plane poles, that F(s) has Only 
simple poles on the imaginary axis with positive and real residues, and that 
ReF (j  a) > 0 for all u. Appendix A gives requirements on the coefficients 
of the realizable linear and quadratic forms of N(s) and D(s) for F(s) to be 
PRNM. 

\ 

The first two conditions are ensured by the method of curve fitting 
(Butterworth Polynomials). The third condition must be achieved either by 
judicious grouping of the factors of F;)(s) or  by the introduction of realizability 
factors as explained in Appendix A and Section IV. It is to be noted that, while 
each of the factors to be realized by one stage of the ladder network must be 
PRNM, the over-all transfer function does not have to satisfy this require- 
ment. 

One other item of great importance in the factor grouping operation is 
the DC attenuation of the associated ladder network. First, as will be de- 
scribed, a gain factor must be applied to the component transfer function in 
order that the branch impedances of the associated ladder network stage are 
PR M R  functions, * as required by the impedance synthesis procedures. 
Amplification must be supplied which compensates for  this factor and makes 
the ladder network DC gain unity. Unless care is exercised in the factoring 
process, the amplifier gain required will become excessive. A final item is 
that care must be exercised in order to generally minimize the number of 
passive elements and keep their values reasonable. The considerations 
presented above are utilized in the iteration process as  shown in Figure 1-1 

* A PRMR function denotes a positive real, minimum resistance function, 

Z (j o), whose real part vanishes a t  some o1 , i. e., ReZ (j W1) = 0 .  
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The synthesis procedures used for  the branch impedances of the various 

ladder network stages are summarized in Table 111-1. The types of component 
transfer functions that will be encountered and the corresponding methods of 
branch impedance synthesis to be employed are given in this table. This 
subject wi l l  be discussed in detail in the following section. 

~~ 

* a, b, c, d, and e real and positive 
J 

Table m-1. Synthesis Procedures 

I I Component Transfer Function* I Method of Branch Impedance Synthesis 

I Inspection s+a  
s + a  ' s + b  

- 1 - 
2 , s + b s + c  S + W L  l 2  s + b s + c  (s * d)(s+c) 

Continued fraction expansion I 
2 

2 ' 2  
s + b s  + c  _(s+a) (s+b)  
s + b s  + d  s + c s + d )  

Bott- Duffin 

It is noted that, while the factors of the desired transfer function FA (8 )  

that are obtained from the approximation process have a unity DC gain, component 
transfer functions of the form shown in Table III-1 with a non-unity DC gain were 
realized in the network synthesis operation. Allowance for this difference is 
provided in the compensation gain (%) for the over-all ladder network. 

A. CONSTANT RESISTANCE LADDER NETWORKS 

1. General 
The following items will  be discussed: 

1) functional relationships between the stage transfer 
functions and the associated branch impedances of a 
constant resistance ladder network; 
cascading of such stages in a ladder network; 2) 

3) assumed network load characteristics; 

4) realizability conditions on the component or stage 
transfer functions; 
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5) 

6) 

determination of the realizability gain factor for these 
component transfer functions; 

determination of the required compensation gain for 
the over-all ladder network. 

2. Transfer Function and Branch Impedance Relationships 
The structure of the 2-port* network representing one stage of a 

constant resistance ladder network is presented in Figure XU-1. 

be: 

1:igure III-1.) Ladder Network 

The input impedance of this network, Zin, is readily found to 

Z a ' ( Z b '  + R~ 
- - 

'in Z a  1 .  + Zb' + RL 
(III-1) 

To satisfy the constant resistance condition, it is required that Zin = RL. The 
network impedance functions are then related by the following expression: 

Z i  = RL (1 + RL/Zd ). 

In order to simplify the initial synthesis considerations, let RL be normalized 
to unity so that: 

(III-2a) b z = 1 + Y  a 

-1 where the admittance Yb = Zb . This, then is the condition for the ladder 

* The term 112-p~rtt '  will mean a network which has two accessible pairs 
of terminals, i . e. , a n  input and an output pair. A l t l-port , t t  will mean a 
network with one accessible terminal pair, such as z ' and Zb'  . 

a 
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network structure to exhibit a constant resistance property. The network 

transfer function is: 

RL - 1 ' (8 )  = 
' v2 F(s) =- 

RL + %(SI 

Again, in the third equality RL has been normalized to unity. 

Equations (m-2) or (III-2a) and (111-3) are the design equations for the 

constant resistance ladder networks. Given the desired component transfer 
function, Equation (m-3) is used to obtain the required branch impedance 
function Zb. Equation (III-2) is then utilized to obtain the corresponding Za. 

3. Cascading Stages of a Constant Resistance Ladder Network 
Suppose that f l  ladder stages are cascaded together as shown in 

Figure III-2. 
1 

I 

1 

I 

~ T S T G E  r--1 

1 I mi I 
I 

- I  
I 
I 

I IS1 STAGE 

lli 
n 
v I ,  [Zbn] 1 A i 

I I 
RL "I 

v A I --- --I---- 

Figure IIl-2. Cascaded Constant Resistance Ladder Stages 

The input impedance looking into any stage is RL. Hence each 
stage is loaded by the same resistive load RL, but each stage has been 
designed to yield the desired transfer function when loaded by RL so that, 
i f  the  network is excited by an ideal generator (R = 0) and the load resistance 

g 
is taken as unity, the network transfer function is: 
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v2 n 
F = J  = ?  F - F I F  ... F 

v1 x = 1  x 2 rl' 

In the general case: 

1 

The form of this equation shows the usefulness of using the constant 
resistance approach in the synthesis of high order transfer functions, i. e. , the 
transfer function may be broken down into a product of simple transfer functions 
and synthesized "piece by piece. l1 The transfer function must be broken down so 
that each component transfer function fulfills the realizability conditions of the 
previous section. This is relatively simple to do, utilizing the methods presented 
in the appendix. 

It is important to note that this ability to build up the network stage 
by stage is practically very useful. Each stage may be tested and "tuned upt1 
before cascading it so  that the effects of component tolerances and non-ideal 
elements may be taken into account much more simply than if the total transfer 
function is realized in a stage. 

4. Network Load Characteristics 

It is seen from the foregoing material that, in order for the method 
* 

presented to be valid, the network load must be resistive. A more precise 
statement would be: The load must l'lookl' resistive over the frequency region 
of interest, i. e. , i f  the network is being synthesized to produce a desired 

transfer function over a frequency range specified as 0 < w s w 

must look resistive over this range. 

sponse of the load must behave as shown in Figure 111-3, i. e., the load 
impedance must not have a significant phase shift in the frequency region of 
interest. This is the real criterion for  applicability of constant-resistance 
transfer function synthesis. 

then the load 

By this is meant that the frequency re- 
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I .  

Figure III-3. Load Impedance Frequency Response 

For the network synthesis work conducted under this contract, the 
load impedance has been taken as resistive with RL = 800 ohms. 

I 
5. Realizability Conditions on the Stage Transfer Functions 

The necessary and sufficient conditions which a component transfer 
function must satisfy in order that it can be realized as a voltage transfer 
function for one stage of a constant resistance ladder network are next discussed. 

a) Necessary Conditions 

v2 

v1 
l ~ ( j w ) /  = 1- ( j w )  I 5 1 f o r a l l w .  

1 This can be seen from Equation (III-3) since F (j W) = + zbci r(.r) 

while Z,, = a+ jB  with Q 2 0 for all g by virtue of the fact Zb must be PR. . 
1 for all w . Note that 'this condition implies 1 

2 g  Hence, IF1 = 7 
, ( 1 + W 2 + P  1 

that F can have no poles, finite or infinite, on the imaginary axis. 

b) Sufficient Conditions 

From Equation (ID-3): 
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To meet nominal realizability standards for a general ladder network with 
assured stability of operation, it is first required that F be a minimum phase 
function with no poles in the right half plane (unstable poles). Now if  z b  is 

to be PR, then Re Zb (j LL)  rO for all CL'; hence, Equation (111-3) requires that 

I F (j 4 
Equation (III-7) can be satisfied only if: 

1)  re [F (j a)] > 0; 

2) a constant K is chosen such that . 

(III-7) 

(III-7a) 

All  such realizability gain factors which must be introduced for the component 
transfer functions to make the associated branch impedances realizable must 
be accounted for by a compensating gain factor for the over-all ladder network. 

c) Summary 

Jf a transfer function F is to be synthesized by a constant 
resistance ladder stage, the necessary and sufficient conditions on the transfer 
function may be stated as follows: 

F must be a positive real function (hence minimum phase with 
no unstable poles) with a non-vanishing real part, and with no poles, finite o r  
infinite, on the imaginary axis and a gain factor must be applied to it such that 
Equation (111-7a) is satisfied. Actually, K is chosen so that K Re 
to simplify the network synthesis operation. 

[ F i w )  1 ='  
minimum 

Table 11-1 and Appendix A enumerate the allowable forms for 
F to be a positive real, non-minimum (PRNM) function as required. Only 
rational functions in the Laplace variable s ,  with at most a 2nd order numerator 
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* 
or denominator, are considered. 
factors introduced in the over-all transfer function by the approximation 
technique used for meeting the gain-phase requirements. The following sub- 
section defines the procedures to be followed for determining the required 

This is because these are the types of 

realizability gain factor F, i. e. , a K such that K Re = 1. 
minimum 

6. Determination of the Realizability Gain Factor for the Stage 
Transfer Functions 

1 For first order component transfer functions, i. e. , F(s) = - s + a  
1 the choice of a positive value for K such that K I - I 1, F ( J ~ )  minimum=' 

+a or - s + b  ' 
is equivalent to the value for K satisfying KRe LF ti cL' =l.  I€ 

inimum 

then 1 s + a  If F2(s) =- I(I is a .  s + b '  Fl(s! = - s+a  ' then the required value for 

, while if a < b  , 5 = 1. The branch impedance functions if a > b ,  % = -  
for such simple stage transfer functions, given by %(s) = 

a 
b 

- 1 and r(s) 
, can be determined by inspection. 1 Za(S) = 1 + - 

Formulas are next derived for the realizability gain factor K for 
the following component transfer functions: 

~ 

* It is again observed that the order of the numerator of F can at most 
equal that of the denominator for F to be realizable by a passive 
network. 
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1) a simple lead over a quadratic, 

s i- ccIL 
-- 

- F ( 5 )  = 2 
v2 

v1 s + 2 r w n s + w  n 
3 

(III-8) 
2) a biquadratic 

It is assumed that F3(s) and F4(s) are PRNM functions as defined 
in Appendix A ,  so that the required value for K can be found. 

v o  8 + 
Y Ll 

a) Lead-Quadratic Case, - = F ( 8 )  = 2 2 
8 + 2 q w  s + u n  n v1 

For the sake of uniformity in equation development for this. 
case and the biquadratic case, the following substitution of coefficients will be 
made: 

Y 1 S + Y 2  
let F3(s) = 7 

2 s + n s + n  
1 

2 - where y = 1; y 2  -aL(; nl = 2 < con; n2 = w n  . 1 

The reciprocal of the frequency characteristic of the transfer function is 

Meeting the constraint 
times the realizability 

n 2 - u 2 + n l j w  

y 2 + y l j "  
(III-10) 

that the minimum value of the real part of Equation (III-10) 

gain factor K3 shall be equal to 1 requires that 

2 
Y 2  n2 + (Y1 nl - Y 2 ) W  -1 

2 2 J = K & ( W ) ]  = 1. (DI-11) 
minimum minimum Y 2  + Y  1 CL' 
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Choosing K3 to be the larger of the values %' and %" such that 

5 I f  ( w) ] w i l l  be > 1 for all CL' with a minimum value = 1 at some 

u1 . Thus must be chosen to be the largest of the values which make 
t 

2 

5' [y22 ] = 
7 2  

r w  L + ] = l ,  and 

(111-12) 

1 Hence K3 = maximum (III-13) 

(111-14) 
* 

The reciprocal of the frequency characteristic of this transfer function is: 
n 

(111-15) 

is 1 
F4 (j 

and the real part of 
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To find a K4 such that K4 i f  (a) ] = 1 , the procedure 
minimum 

employed is to compute the minimum value for f (w) and then take K4 to 

be the reciprocal of this value. (Again it was established in the reference that 

to be positive real, non-minimum, i. e. , by previously requiring - v2 

v1 

- v2 Re [F] > 0, then f (w) is > 0 for all w and therefore such a K does 

exist.) 

To find the minimum value of f (w ) ,  the first derivative of 
Equation (III-16) is set equal to 0, and solutions are obtained for the frequencies 

at which the local minimum o r  maximum values of the function occur. i' 
Following this procedure gives 

Choosing only real, positive values for wi and substituting in Equation (III-16) 

determines f (0) at its local minimum and maximum points. 

Selecting the absolute minimum of these values, Fo(w), the gain 

factor K4 that will make K4fo(w) = 1 is of course 

K4 = - Lo:,, 1 (m-18) 

c) Illustrative Examples 

An example of each of the foregoing cases is chosen from the 
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natural factors of the over-all NASA transfer function which is to be 
synthesized. 

For an "acceptable" (i. e. , PRNM) lead-quadratic factor 

s -1- 20 
s + 23.4s + 2025 
the ladder stage that has the modified transfer function K 

are physically realizable. Using Equation (111-13), K must be 2 -2 - 

, a K must be chosen such that the branch impedances of 
2 

1 s + 20 
s2 + 23.4s + 2025 

"L - 

'% 
= 0.294. In this case the - - 20 1 

23.4-20 - = 0.0099 and 2 
2025 2 r s  - "L 

stronger constraint is K 2 0.294, so that K is taken as 0.294. (Since the 
lead-quadratic term is modified by the factor in order to make it realizable, 

a compensation gain factor equal to K has to be provided external to the ladder 
network. ) 

1 

2 s -F 20s +400 . A 
s + 63s + 2025 

An acceptable biquadratic factor is 

is chosen using the following procedure. From Equations (111-17), o 

= 0; 39.82; 10.65. Substituting in Equation (III-16) gives the respective values 
for  f (w) ,  5.06; 0.724; 5.418. Since the minimum is 0.724, from Equation (IXI-18), 

1, 2, 3 

1 K =  - = 1.38. .724 b 

Again, the associated branch impedances for each of the 
preceding cases a r e  obtained by Z = - -1  and Z a = l + - .  1 

b F(s) 'b 

7. Determination of the Required Compensation Gain for the 
Over-all Ladder Network 

A compensation gain factor, 5, must be provided for the 

over-all ladder network so that its DC gain is unity. To simplify the following 

discussion concerning the determination of 5, consider as an example the 
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required component transfer function: 
-I 

While this is the canonical form in which transfer functions are usually 
specified with a unity DC gain, actually the following transfer function is 
synthesized: 

(LZI- 19) 

(III-20) 

The realizability gain factor, Ki , is determined as the smallest positive 
number which satisfies the inequality: 

s + b  2 1  
1 KiRe [w] = KiRe - s + a  (111-2 1) 

The value for Ki is thus chosen so that for the w1 at which Re 
(j L'J 

1 I F(jul)  I=  '' isaminimum K Re i 

The branch impedances of the associated stage of the constant 
resistance ladder network will then be caused to be positive real, minimum 
resistance (PRMR) functions. This is required by the synthesis procedures 
to be used for these branch impedances. 

For a lag-lead factor, i. e.,  a > b, it is noted that ' 
a 

i b  K. = - and o = 0. For a lead-lag factor, that is, a <b, Ki 
1 and 

The relation between the desired component transfer function 

F: ( 8 )  and the synthesized transfer function Fi(s)/Ki is: 

(III-22) I b 
Fi (8) = - a Ki k i ( s ) / K i ]  

b Thus, the required compensation gain for  this factor is = a  Ki , since 



I 

Fi (e) has the desired DC gain of unity. In general, assume that the desired 

over-all transfer function FL (s) with a DC gain of unity and acceptable 

I factoring is given by: 
I 

I I N1 '(SI Nz '(s) Nn'W 

D1 (SI D2'(s) Dn'W 
t FD (s) = F1(s) F2 '(s) . . . F n(s) = , ... (IU-23) 

~ Then, the synthesized transfer function FD(s) will be given by: 

t 

and the required over-all compensation gain factor 5 for the ladder network 
is: 
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B. BRANCH IMPEDANCE SYNTHESIS PROCEDURES 

1. General 

This section describes in detail the three procedures that are used to 
synthesize the l-port branch networks of a constant resistance ladder network With 
the desired compensation function as i ts  over-alltransfer function. Table m-1 Of 
section 111 delineated the realizable forms of the impedance functions for these 
branch networks and indicated the three synthesis procedures to be used: continued 

fraction, Bott-Duffin and modified Bott-Duffin. A fourth procedure is implicit in 
the synthesis operation; it is the recognition of simple first order impedance ele- 
ments by inspection. 

2. Continued Fraction Expansion 

a) General 

For those cases where it is applicable, Le. ,  where a zero or 
pole of the given impedance function, Z (s), is on the imaginary axis, the method 
of continued fractions yields a particularly simple realization, The paragraphs 
below outline the method and illustrate its use in the constant resistance ladder net- 
work synthesis problem. 

Consider the l-port network presented in Figure III-4(a) whose 
impedance is Z .  Assume that Z can be expressed as the sum of a simple impedance 

function Z1 (i.e., Z1 = K s, - 

is always true if Z has a zero or pole on the imaginary axis.) Then, a s  in Figure 

2 2  K 2  I 
and a remainder Z2 . (This K(s + a ) or  T +  a 

S 
s ’  

III-4(b) : 0 

(a 1 
a’ 

(b) 

0 1 I 
A’ 

(d1 

Figure III-4. Some Impedance Configurations 
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1 z = z1 + Z 2 l  = z1 + - 1 .  

y2 
(III-26) 

The admittance Y2' is next considered to be composed of the ele- 
ments depicted in Figure m-4(c). Then, Y2' may be expressed as: 

1 
1 '  =Ye + 2 z 3 +  z4 

Y 2 ' = Y  + 1 

z3 yq 
(III-27) 

Substituting Equation (III-27) into Equation (III-26), the impedance of the network 
shown in Figure III-4 (d) is: 

1 
z=zl+ 1 

y 2 +  z3+ - 1 

y4 

(DI-28) 

It is seen that the philosophy used to obtain Equation (III-28) may be generalized. 
Thus, consider the general network shown in Figure IJl-5. 

0 - A n . . .  

Figure 111-5. General Network 

The corresponding impedance function Z(s) may be written 

1 z=zl+ 
1 

yo + 
1 (ID-29) L 

z, + 
1 4 

y4 + 1 
z5 + 

39 



Inversely, if the given impedance function is expanded in the con- 
tinued fraction form of Equation (llI-29), the elements of the ladder network with 
this impedance function will be as defined in Figure III-5. 

that were 
synthesis 

This method will now be illustrated for  the two types of functions 
synthesized by this technique in the constant resistance ladder network 
problem. 

2 a s  + b s + c  b) Continued Fraction Expansion for the Form: Z(s)  = 

Assume that the voltage transfer function for one stage of the de-. 
S + %  

sired constant resistance ladder network comprises a simple lead term in the 
numerator, and a quadratic lag term in the denominator. Then, the equations 
relating the network transfer function of this stage to its branch network impedance 
functions, as presented in section 111-A, lead to the form presented above for one of 
the impedances, namely Zb. This impedance has a pole at S = j W= 03. When this 
impedance is found, the related branch impedance (Z ) is determined from the 
relation, z = 1 + z ‘ a b ‘  
outlined . 

a 
The method of impedance synthesis used is now explicitly 

By simple long division: 
- a s L + b s + c  1 

L = Las + (b - aWL) 1 + s + w  
Zb = 

L S + O  
(ID-30) 

where K = c - (b - a w ) wL. L 

It is observed that Equations (ID-26) and (ID-30) have the same 
form, and hence the following identification may be made: 

Z1 = a s  + (b - a W L )  

L S + W  

K g  Yz’ = 

(111-3 1) 

(DI-32) 

The form of Equation (III-31) suggests the series combination of 
an inductor, L1, and a resistor, R1, in series. Equating the impedance of such 
a configuration with Equation (111-31): 
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Z1 = L1 s + R = a s + (b - a  wL) 1 

which leads to the identification: 
L 1 = a ;  R 1 = b - a U L .  

Equation (III-32) may be rewritten: 

(In-33) 

(m-32a) 

The form of this equation suggests the use of a parallel combina- 
tion of a capacitor, C2, and a resistor, R2. Equating the impedance of such a con- 
figuration with Equation (111-32a): 

1 - 
- c2 - 

1 
S+-  

R2 c2 

K 
S + O  L 

which leads to the identifications: 

L 
(nI-34) 

Since the impedance is of the form of Equation (IJI-26), the net- 
work wiii be of the fcm preserrtec! ir? Figm m-4 {b!; it is again given in Figure III-6 

with the specific impedances obtained for this case. 

Figure III-6. Branch Network Configuration 
0 

as*  + b s  + c For Zb = s + O, 
L 
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The related branch impedance function, Za, for the Zb under 
study is now considered. It is given as: I 

(l LI-3 7) 

L s + a  

a s  + b s + c  
-1 

Z a = l + Z  = I +  2 b 1 (Lu-35) 

Substituting Equation (111-30) into Equation (ID-35): 

1 I 

K 
s + w, 

z a = l +  - a s  + (b - a 0 ) + L 
(In-36) I 

It is observed that Za has the form: 

1 
1 za = z1 + 

y2 +T 
where: 

z1 = 1 

L s + w  

K *  ; z =  - 1 - 
'2 a s  + (b - a UL) 3 

I 

(III-38); (ID-39) ~ 

1 

Equation (111-37) obviously dictates the use of a 1-ohm resistor for 

ZI: 
the component values, say, R2 and C 

used for Z2' in the synthesis of Zb. The values so obtained are: 

Z2 is synthesized by use of a parallel resistor-capacitor combination where 
are found by a procedure identical to that I 2' 

1 I , C = a .  2 R =  2 b + a w L  (III-40) I 

Z3 is obtained in a manner analogous to that used for Z1 in the 
synthesis of Za. The series inductor-resistor combination has the element values: 

1 

(ID-41) 

The resulting impedance configuration is presented in Figure 111-7. 
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1 1 
R I  = I  

I 

L S + U  

2 Figure III-7. Branch Network for Za = 1+ 
a s  + b s + c  

t 

I 

c) Continued Fraction Expansion for 

For the case where a stage of the 

2 the Form: Z(s) = s + b s + c  
s + a s  

constant resistance ladder net- 
work is characterized by a voltage transfer function comprised of a lead quadratic 
term and two simple lag terms, the corresponding vaiue 01 Zb is, in r n ~ q  czsec: 

1 2 

s + a s  

s + b s + c  - - 
2 c + b s + s  

as + s 

%I= 2 

2 

1 

(III-42) 

[I--] s .& 1 

a 2 pq 
a 

This may be identified with the continued function expansion: 
1 
1 z = z  + b 1  

where : 
z1 = o  (III-43) 
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-1 -1 z2 = Y2 
a 

1 
ab - c + a 

a 

(111-44) I 

(III-45) 1 
The form of Equation (IIl-44) suggests the choice of a parallel inductor-resistor 1 
combination. Jf these choices are made and the coefficients of the resulting imped- 
ance functions are equated with the appropriate coefficients in Equations (111-44) and 

i 

(111-45), the configuration presented in Figure 111-8 is obtained. I 

2, = o  
Lp = a / c  

2 a 
a b-c R2 I- 

RS [ I - ( 9 1 ] - '  

2 s + b s + c  
s + a s  

Figure III-8. Branch Network For Zb = 

1 The related branch impedance Za is given.as: 
-1 

b z = 1 + z  a 

(111-46) 1 
a 1 a 

[ 1 -(-)Is a +[ 1 -(@$)I a 

Equation (III-46) is recognized as having the form: 

1 z a = z  + -  
I y2 

where : 

1 z = - +  (1+- C 
1 a s  a 

(111-47) 
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and 
1 

1 + a 
ab - 

a a 

(III-48) 

The form of Equation (IIt-47) suggests a series resistor-capacitor 
combination while the form of Equation (In-48) suggests a parallel inductor-resistor 
combination. Computing the irnpedaacz 9mctinrrs associated with these element com- 
binations and equating the coefficients of the resulting expressions with the appropriate 
coefficients in Equations (ID-47) and (III-48), the impedance configuration of Fi-gure 

ID-9 is obtained. 

3. Bott-Duffin synthesis of Positive Real Minimum Impedances 

For positive real, minimum impedance functions, it is not possible to 
use the continued fraction synthesis technique. Since such a function has no poles 
or zeros on the imaginary axis, the simplification process associated with removal 
of such poles or zeros cannot be carried out. 

Various techniques exist for synthesizing PR minimum impedance 
functions, including Brune: Miyata and Bott-Duffin. The Brm; approach is not 
favored since it involves the use of ideal transformers. A study was conducted 
of the Miyata and Bott-Duffin procedures. It revealed that the latter yields a 
simpler network realization for 'the classes of component transfer functions asso- 
ciated with the various stages of the desired constant resistance ladder network. 
Hence, the Bott-Duffin synthesis technique has been chosen for the positive real, 
minimum, biquadratic impedance functions encountered in this application. 
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Suppose the following conjecture is made: It is possible to synthesize 
any positive real minimum impedance Z(s) by the impedance topology presented 
in Figure III-lo. If the above is to be true, certain conditions must be fulfilled, 
namely: 

a) 

b) 

If Z(s) is positive real, then each of the Zi 1s composing the 
topology must be positive real. 
If any useful result is to be obtained, the Zi ts  must not be Of 
higher order than the original Z(s). 

Figure III-10. Preliminary Impedance Topology 

The Bott-Duffin method of impedance synthesis is based on the topology 
of Figure 111-10 and the Richards function, R(s), which guarantees that the above 
requirements are satisfied. 

The Richards function is defined as follows: Given a positive real  func- 

tion Z of the complex variable s, the function is: 

- (kl (k = positive number) k Z(k) - s Z (s) R(s) = 

where R(s) has the properties 

a) R(s) is positive real 

b) R(s) is not of higher order than Z(s). 

Equation (III-.49) may be solved for Z(s) as: 

1 
1 E m '  + 1 

1 Z(s) = 

Z (IC) R (s) -ti< Z tk) ] + Z(k) 
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From Figure 111-10, 

1 - - 1 + 1 
Y1+Yc Y 2 + Y L  - 1 + -  1 I 

z1 zC z2 zL 

+ 1 
Z(s) = 

Equating coefficients between Equations (III-50) and (III-51): 
1 

z1 = z (k) R(s) 
w 

'2 = R(s) 

s = L  6 2 

(III-51) 

(UI-52) 

(III-53) 

(111-54) 

(111-54a) 

(111-55) 

where: 
(III-55a) 

*- n'-' :- 7323, than hnth its reciDroca1 and R(s) multiplied by a constant are  -. 
O L A A b b )  a.w\-, -- - - 

1 
positive real, and the Zi are also positive real. 

I 
As indicated by the preceding development, the impedance topology of 

Figure 111-10 may be redrawn as shown in Figure III-11. 

Figure 111-11. Firs t  Impedance Topology 
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The next problem is to determine the required value of k. The approach 
used is to consider the frequency, UI, at which Z is purely reactive, i. e., 
Re Z(S) I s = j W  vanishes. If at  this frequency the reactance is positive, R(s) is 

chosen so that Z1 is a short circuit and Z2 is an open circuit. Hence, L2 repre- 
sents Z at U1 and an appropriate value of L2 may be calculated from the known 
reactance and W values. If the reactance is negative, a similar procedure may 
be carried out with C1 representing Z at  U1, instead of L2. The two cases are  
worked out in detail in the subsequent paragraphs. 

Case I - Z (j W1) = j gl and xl > 0 

1 

1 

From Equations (111-51), (III-54), and (111-55): 

(111-56) 

From Equations (111-52) andQII-53), if R(s) is required to have a zero 
at W =  01, then: 

Z1 ( lWl )  = Z (k) R (jW,) = 0, (111-57) 

Z2 (j U1) = Z (k) R (j wl) = (111-5 8) 

In this case, the impedance topology at UL U1 may be represented as 
shown in Figure 111-12. 

(Network (a) Equivalent to Network (b) ) 

Figure LII-12. Impedance Topology at a= w (Z  (j W1) = j zl, El > 0) 
1 
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I 

- 
X -1 or, L =-.  
W1 

(III-59) 

(111-60) 

Since both U1 and El are considered to be known, the required L2 may be calculated. 

An acceptable value for k (ko, real and positive) can be calculated from 
Equations (111-55a) and (111-60) as: 

(111-61) 

Equations (lII-52), (lI1-53), and (In-54a) may now be evaiuab4, Uaiiig 4%z I, 

yield the value of C1 and the functional forms of Z1 and Z2. 

tc 
-0, 

-1 Since Z1 (s) has a pole a t  j q, then, for W1 # 0 ,  it must also have 
a pole a t  - j W1. Let Z1 (s) be written as follows: 

-1 F1 (SI 
z1 = . 2 .  ,. 2, m ,”\ 

\u ’ -1 I - 2 \ - I  

where, again, Z1 (a; is a PE?M fcnctim and F,(s) and F,(s) have no common 
factors. Let Z1-l (s) be expanded as: 

1 -  Y 

1 + -  O2 
s - j W  1 z3 (SI 

OL1 + z1 ( s ) = s + j W  
-1 

1 

It is easily shown that the residues, ai are: 

Equations (III-64) are of the form: 

(III-62) 

(111-63) 

(111-64) 

al = a + jb, a 2 = a - j b .  (111-65) 

Since the PR condition requires that the ai be real, the only choice is: 

cy =CY = “ = a .  1 2  
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Substituting Equation (III-66) into (III-63): 

1 2 a s  + - -1 
z1 (s) = 2 2 z3 (s) 

1 s +a 

Similarly, 

(In-67) 

(111-68) 

These results are illustrated by the circuit diagram of Figure 111-13. 

N R W O R K  ( a )  EQUIVALENT TO NETWOXX (b) 

Figure III-13. Second Impedance Configuration (2 (j W1) = j g l ,  gl > 0) 

Assuming a series L C3 combination in parallel with Z3: 3' 

l 2 2 -  L3 c3 s + 1 8 + L3 c3 
- - = -  I. + L  s =  - z L 3 c 3  c3 s 3 c3 s 
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Hence, the following identifications 

2 a  ' 
1 1 - = 2 a o r L 3 =  - 
L3 

may immediately be made: 

2 1 -  2a 
2 - -  2 '  = o  or C 3 =  1 

1 w 1 
L3 c3 L3 "1 

Aasimning for a parallel L,, C, combination in series with Z4: 
f - x  

Hence: 

I 
u4"4 pls+ L4 s "4'4 " 

LL 

- 1 -- -2a or c4-% 
c4 

2 1 -  2a 

1 

= w  orL4  - -- 
1 2 c r :  c4 O1 

2' . L C q  

(III-69) 

(III-70) 

(III-71) 

(III-72) 

! I  cs L3 I !  

c I  
0 c I +--A- 

f--1---- 1 
I I 

Figure III-14. Final Impedance Configuration ( Z  (j W1) = j zl, gl > 0) 
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In order for this approach to represent a valid synthesis procedure, the 
impedances Z3 and Z4 must be simpler than the original Z. By the method used to 
generate Z and Z4, i.e., via Equations (III-67) and (111-68), Z3 and Z4 each 
possess two less poles and zeros than Z1 and Z2, which are  of the same order Of 
complexity as Z as may be seen from Equations (ID-52) and (ID-53). Hence, z3 
and Z4 each have two less poles and zeros than Z. 

3 

The above statements are illustrated by the following equation: 

3 
s + d '  

a s  a 
+ -  1 

where: 
a - d) (b - d) 

It is seen that the last term on 
the original function F (s). 

To synthesize high 

the right has two less poles and two less zeros than 

order impedance functions, this method may be iter- 
ated using Z3 and Z4 as  starting points for a second Bott-Duffin cycle. This is not 
required with the constant resistance network approach since Z(s) is at  most a 
second order numerator divided by a second order denominator. In this case, Z3 

and Z will prove to be constant, i.e., resistances. 4 

Case II- z (j wl) = - j El, xl > o 

Suppose R (6) is required to possess a pole at s = jO1; then, from 
Equations (Ill-52) and (lI1-53): 

For this case the circuit representation is shown in Fig'ure ID-15. 
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NETWORK (a) EQUIVALENT TO NENJORK (b) 

Figure 111-15. Circuit Representation at U= w1 

- ~ ~ W ~ ) = - j g ~ = - j ( & ) o r  - = w  1 x 
1 -1' c1 

(In-75) 

where x and O1 are both known so that C1 may be calculated. -1 

If R (s) has a pole at  s = j W1, then the denominator of Equation (III-49) 

must vanish at this frequency, i.e. : 

0 = k Z (k) - j W1 Z (j W1) = k Z (k) - u1 El (111- 7 6) 

An acceptable value for k (ko, real  and positive) is obtained from 
Equation 111-76. 

Using this value of ko, L2 may be o5tained from Equation (III-55a) and 
the functional forms for Z1 and Z2 from Equations (III-52) and (ID-53). 

Since Z1 (j W) has a pole at U1, as indicated by Equation (III-73), Z1 

may be expressed as: 
20!, s 

I - % -  2. 2 + Z3' 
1 

s + w  
(III-77) 

Since Z2 ( j  0) has a zero at W1, as indicated by Equation (III-74), Z2 

may be expressed as: 
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1 2 CY1 B 
-1 - 

z2 - s 2 +ul  2 +  q '  
The progress made so far i s  illustrated in Figure 111-16. 

(111-7 8) 

z2 
I---- 

NETWORK (a) EQUIVALENT TO NETWORK (b) 

Figure III-16. Second Impedance Configuration 

For a parallel L C configuration in series with Z3: 3 3  
1 

- 2  1 '  

s - 

Hence, equating elements: 

1 - = 2 a l  o r c 3 =  - 
2 al' c3 

1 2 1 
2 -  

c 3 y 2  w 1 
= O J  1 O r L 3 =  - = -  L3 c3 

For a series L4 C4 combination in parallel with Z4: 

(In-79) 

(111-80) 

1 2 -  s + L4 c4 - 
- 1  - zL4 c4 w s  
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For a series L4 C4 combination in parallel with Z4: 

'I 

The following identifications may similarly be made: 

1 1 

Or =4 = 2 T -  
- = 2 a 1  
=4 . 

1 2 a  

2 w .  
=- 1 - = -  or C4 = 

1 1 
L;C; *.a 2 

"1 L4 w1 1 

(XII-81) 

(ID-82) 

The circuit diagram corresponding to Equations (m-79) - ( m - 8 2 )  is 
presented in Figure lII-17. 

7 1 -------- z2 z! 
I-------- 

c3 
I-------- 

i" 
Figure XU-17. Final Impedance Configuration (Z ( j  W,) = - j El, El > 0 )  

Finally, the complexity of Z3 and Z4 relative to Z for this case is the 

same as that for the previous case, i. e., Z3 and Z4 each have two less poles and 
zeros than Z. Thus, for the Z's under consideration, Z3 and Z4 will again prove 
to be constant, and the synthesis is completed with the application of one Bott-Duffin 
cycle. 
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4, Modified Bott-Duffin Synthesis Procedure 

U s e  of the modified Bott-Duffin synthesis procedure remedies the 
sensitive, balanced bridge configuration of the Bott-Duffin network and reduces by 
one the number of elements required for a Bott-Duffin realization of a biquadratic 
impedance function. A s  in the Bott-Duffin approach, two separate cases are treated 
in the synthesis of a PRM impedance function Z(s): one where Z (j W1) = j El and the - 
other where .Z (j ul) = - j x -1' E1 > 0. 

Case1 z ( j ~ , ) = j X  -1' X -1 > O  

The Bott-Duffin approach outlined previously gives rise to an impedance 
which is, in essence, a bridge configuration as is evidenced by Figure ID-18. In 
order for the bridge to be balanced, i t  is required that VIA = VlA' and VA2 = VA12. 

This condition may be written: 

(UI-83) 

where: 

VIA = il Zc, VlA1 = i2 Z1, VA2 = il Z2, VA12 = i2 ZL . (111-84) 

Figure III-18. Equivalent Impedance of Figure III-10 
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Substituting E ~ p t i o n s  (111-84) into (111-83) the balance condition is: 

= z  z z1z2  c L' 
Substituting Equations (III-52), (III-53), (lI1-54), and (111-55) into (IU-85): 

(III-85) 

G r  
2 2 Z (k) = 2 (k) . 

Hence, the bridge is balanced and VAA = 0 (independently of whether AA ' are 
connected or not). Since this is the case, any impedance may be connected across 
a a ' -J&L-.., nk\sn&ma 7. nA W ~ W U U . . ~ - - ~ -  -_ 

Figure IU-19 presents the final impedance configuration of Figure l3l-14 

redrawn in such a way as to illustrate the procedure to be outlined. 

r------ 1 
b 

I 
I 
i 

1 

z4 ' 

I 

L2 
d 

0 

Figure III-19. Modified Impedance Topology of Figure III-14 

It is seen that an impedance L has been connected across the terminals and the 
impedance of Figure III-14 has been manipulated to put into evidence the T network 
enclosed in the dotted line. It is desired to transform this network into an equiv- 
alent delta configuration. 



Figure III-20. Delta-Tee Transformation 

Figure III-20 summarizes the familiar A- T transformation. For the 
network of interest, the following identifications are made: 

1 (111-86) - 
z l -  c q  

1 - 
L4 8 c4s . L4 8 

L 4 s +  - 
- - 

1 L4C4 sz+ 1 

c4 

z =  2 (III-87) 

z . = L s  3 

0 L 4 s  2 + I  3 +[.a][ L 4 C 4 S  L4 2 + 1  ] +[+I [ L a 1  

2 
T I S  + 1  

L4 + L 

2 W - 8 9 )  
- - c1 [iL4 L 1 +  L4 - 

c1 7 s  + 1  2 L 4 C 4 S  + 1  

Since L i s  arbitrary, a favorable choice i s  one that makes T1 = 7.  

Equating these quantities in Equation (111-89): 

= L4C4 P 1 +  c4) 
L4 L1 + L4 
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which leads to the result: 

L = L4 C4/C1 . 
Substituting the value for L obtained in Equation (III-90) into (III-89): 

(nI-90) 

(rn-91) L4 L + L4 
- -  2 (C, + C4)' - z =  

0 

c1 c1 

From Equations (III-86), (IU-88), (III-90), (ai-9ij anti the exprei;o!czsrfm ZL and 

Z3 in Figure lII-20: 

0 
( C 1 + C 4 ) = L  4 c 4 rl+ c1 c4 c4)s 

z 

l. 

(III-92) 

and 

The following definitions are now made: 

- - CI c4 
c1+c4 

1 
Y2= L4C4 

Substituting Equations (III-94) and (III-95) into (m-92) and (HI-93): 

and 
1 - 

z3-  c,* 

(111-94) 

(111-95 j 

(III-96) 

(III-97) 

The remaining impedance, Z2, is obtained from Figure III-20 and 

Equations (III-87) and (HI-91) as: 
L 4 C 4 S  2 + 1 

(LU-98) 

c l +  
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Consider now a series impedance composed of an inductor L ' and a 
2 -1 

capacitor C I .  The impedance, Z I ,  of this arm is (L'  C' s + 1) (C ' s) 

Equation Z with Z2 in Equation (111-98): 

2 
1 2  L 4 C 4 S  + 1  - - L I C  s + 1  

2 C I S  
c1 

C l  + c4 
This expression leads to: 

(111-99) 

and 
2 

2 .  
L I =-= L4c4 L4c4 = c4 

C I  c l c o  clcowl 
(111-loo) 

The circuit of Figure 111-19 may now be drawn as shown in Figure 111-21. 

Consider the parallel configuration shown in the dashed lines of Figure 
III-21b. From Equations (III-99) and (III-100) it is seen that L' C ' = 2 and, from 

w, 1 1 

1 
Equation (HI-69) L3 C3 = - 2 '  

w 

Thus, 

1 I 1  L c = L 3 C 3 =  - 2 -  
w1 

2 
Hence 

1 -  [ L ' C 1 S 2 + l ]  = - 1 
C I S  Z I = L ' s +  - - - 

CIS C I S  

2 
Z 3 = L 3 s +  - -  1 -  - 1 [ L3 c3 s2 + 13. = 1 ["i +1]. 

c3s c3s c 3 s  w1 



The parallel cumbination, Z of these impedances is ,  therefore: 

2 + 1  

z =  - w1 (rn-101) 
P z'+z 3 s ( C ' + C 3 )  

z' z3 - 

I--- 1 
I I 

-7- - 23 

0 
0 

(a) PRECl Mi NARY CONFIGURATION 

I -  I 

1 r 

(b) SECOND CONFIGURATION 

Figure El-21. Modified Bott-Duffin h p d a n c e  Configuration 

In order to identify the above impedance with a realizable impedance, consider the 

series combination of an inductor L* and a capacitor C*. The impedance is: 

n 

L* c* sL + 1 Z * = L * s +  - = c* 8 c* 6 
Equating coefficients between Equations (111-101) and (111-102): 

c* = c ' + cg 

and 

(III-102) 

(ID-103) 

c -  L3 

c3 
- 7. Hence, Equation (In-103) becomes: L However, if L' C ' = L3 C3, then - 
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1 - 
1 '  

L3 
+ -  - 1  

L* = 
- 

L' L3 
L3 1 +  1 L 

(XU- 104) 

The final Modified Bott-Duffin network assumes the form presented 
in Figure 111-22b. Figure 111-22a presents the original Bott-Duffin network for 
purposes of comparison. 

Note that this procedure has two advantages: 

a) one element has been eliminated; * 

b) the impedance is no longer in the form of a balanced bridge 
and hence not so sensitive to component tolerances. 

Case II (jol) = -j El, xl > o 
- 

For the case where Z ( j  W1) = - j lCl, a procedure similar to one utilized 

above may be followed. The results are presented in Figure 111-23. 

An example of the application of the Bott-Duffin and modified Bott-Duffin 
synthesis procedures to a biquadratic impedance function is presented in Appendix 
B. 

c3 L3 

-it--- 

? 
+I------- 
;; L2 

I 
Lo'- 2 

cou I 

c: 
C*8 

'1' '4 

(a) ORIGINAL CONFIGURATION (b) MOOlFlEO CONFIGURATION 

Figure 111-22. Final Modified Impedance Configuration 

for  z (jol) = j El, El > o 
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. 

Y -  

A A I 

2; v2 RL 

I 

F(s)=  V 2 I V I  

6 
(a) ORIGINAL CONFIGURATION 

b b 

c* 8 - 
L -2 

(b) MODIFIED CONFIGURATION 

Figure III-23. Final Modified Impedance Configuration 

for z (jo = - j  gl, El > o 1 

5. Immdance Scalinp for the Assumed Load Resistance 

Section m-a demonstratedthat for a constant resistance ladder network, 
the branch impedances Za' and Zb' (Figure III-23) are related to the component 

transfer function F(s) and the load resistance RL by the equations: 

0 - + + 1 
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For the initial step in synthesis of the branch impedances, Z a l  and z b  I , RL 
is normalized to unity. Thus, the initial impedances, Za and Zb, are given by: 

1 - l a n d Z a = l + -  . 1 - 
z b -  F(s) 'b 

The desired impedances are then obtained from Za and zb  by: 

(III- 105) 

(III-106) 

(III-107) 

The assumed load resistance for the NASA compensation network is RL = 

800 ohms. Hence, the impedance elements of Za and Zb must be scaled up by a 
factor of 800. This is accomplished a s  follows: 
Resistors: 

4 800 RZ = R Z  1 1 .  

L + 800 Lz = L z  I I .  

RZa, zb a' 'b a '  'b 

Inductors: 

'a' 'b a' 'b a '  'b 

C apaci tors: C 
'a' 'b = c z  I 1 .  

-. 

a ' 'b 800 C 
'a' 'b 
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SECTION IV 

TRANSFER FUNCTION FACTORING AND LADDER NETWORK SYNTHESIS 

A. GENERAL 

This section covers the following items: 

1) factoring the over-all desired compensation function so as to yield 
positive real, non-minimum component transfer functions that can 
be reaiized m BQXGGZ ztzgcs cf '1 cnnntsant resistance ladder network; 
synthesis of the branch impedances of the various stages of the ladder 
network using the previously described synthesis procedures; 
modification of the factoring process so that the resulting ladder net- 
work will have more reasonably sized passive elements and less DC atten- 
uation. (Any such DC attmuation in the network must be compensated 
by a gain factor in front of the network, and it is desired to minimize 
the required signal amplification. ) 

2) 

3) 

B. INITIAL TRANSFER FUNCTION FAC'~'CMUWY 

The desired compensation transfer iunction obtained by apprcximzting the 

gain-phase requirements given by NASA is: 

1 (This ie actually the modified form of FD(s), with a non-unity DC gain to be sub- 

sequently compensated. ) The numerator and denominator terms of FD(s) are linear 
o r  quadratic factors in s with real, positive coefficients. The notation L (t) de- 
notes a linear term, S + t, while Q (c/%) denotes S + 2 5 %S + 2 2 . 

The numerator and demominator terms must be grouped so that each corn- 
Ni ponent transfer function -, of the over-all transfer function is a positive real, 
Di 

non-minimum function. Figure IV-1 presents a simplified schematic of the initial 

and subsequent iteration processes utilized in factoring the desired FD (s), subject 
to the above conditions. The material presented in the following paragraphs of this 
section is basically an elucidation of this figure. 
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The denominator term Q ( F ) c a n  only be combined with the numerator 
term L(20) to yield a PRNM function as defined in Appendix A. Of the two remain- 
ing numerator forms present, that is, Q(%)and Q O  the denominator term 

a ( - - )  can only be combined with the numerator term Q(g) to yield a PRNM 

function. The denominator term Q ( 9 ) c a n  be combined with one of the three 

Q($$J fzctma in the numerator. The second a(=) factor of the numerator can 

be combined with the denominator terms, L(4) and L(2000). 

-0 7 

12& 

f 0.4\ 
then remains. Of the original factors, the fraction L(zooo) rd kTd 

11 =A I D  a - --- uuu -*VI------ --li.r-hla trmnfer function, since the order of the numerator e X C e e d S  

the order of the denominator. 

It now becomes necessary to introduce realizability factors of the form 

&Wand- where a and b are real and positive and where b is large enough 
L(a) L(b) ' 
to cause any significant gain-phase variation to lie beyond the frequency range of 
interest. These introduced factors must be chosen so that when they are  grouped 
with the remaining uncombined factors of the over-all transfer function, izZ PXXM 
requirement for each grouping will be satisfied. 

1 LO The factors and '7 were initially chosen, because it 
L(126) ' L(126) ' L(10 1 

was felt that the resulting network realizations would not contain any large passive 
elements and L(10 ) was well beyond the frequency range of interest. These factors 4 

were grouped with L(2000) into PRNM component transfer functions as follows: 

and&! L 126 . 

Thus, the over-all desired transfer function has been approximated by the 

L(126) L(126) * L(2OOO) 

product of component transfer functions as follows: 
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This is the transfer function for the first ladder network to be synthesized. 

C. INITIAL LADDER NETWORK SYNTHESIS 

To meet the realizability requirements for the branch impedances of the 
individual stages of the ladder network, realizability gain factors, Ki, are intro- 

= 1.0 a s  described in Appendix A. (Again, a duced so that Ki Re 

gain factor KT is to be provided external to the over-all ladder network, to compen- 
sate for the Ki's thus introduced to provide a DC gain of unity.) 

Li i 4  lminimum 

Each component transfer function of Equation (IV-2) has been synthesized as 
a separate stage of a constant resistance ladder network with the branch impedance 
of the i th stage, 2 and Z assuming unity, load resistance, given by: 

ai bia 
K. I z =-  ' - l a n d ~  = I + -  

bi Fi ai bi 
Z '  

In computing the element values for the branch impedance of each of these stages, 
the specific techniques associated in Table III-1 with the various forms of the 
component transfer functions (inspection, continued fractions, Bott-Duffin) were 
employed as previously described in detail in Section III. The impedance elements 
were scaled by a factor of 800 to account for a load resistance of 800 ohms. 

The resultant over-all ladder network configuration 1, with a transfer function 
as given by Equation (Ill-2), is shown in Ffgure Ill-2. It contains 59 elements and 
the over-all gain factor, K 
given 8s 537D 600. 

stages of the ladder network are indicated, as well as  the associated Ki and K 
values. 

that will yield the final required compensation network T' 
The component transfer functions for each of the individual 

*i 
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D. IMPROVED LADDER NETWORKS 

A modification of the first factor grouping was suggested by the relative 
magnitude of the K Ti" (KT ' KT6 and YT7) in an effort to reduce the required 

&YJ factors of the form L( 2 0 0 0 )  ' over-all 5. For the original remaining fraction 
4 

4 with b again= 10 . 
L(b) 

were considered for grouping as L(2000) L(a) . &EL a d -  1 
L(a) L(b) 

Q ( Cs/aN) 
the minimum value of the real part 

0 0  
1 2- of the reciprocal generally occurs at O= 0 ,  and this minimum value fo(U) = -- 2 

2000a 

LWl 1 L( 
For the transfer function form 

0 
The optimum value for the gain constants Ki and K are unity. T h i p  

(126)2 Ti 

result is achieved by setting: 

2000 a = 15,876 
or a =  7.94. 

1260. This 4 However, with b = 10 , the over-all gain factor KT for 
i ~ ( 1 0 ~ 1  

suggested dropping the factor , and combining L (7.94) with the fraction 
~ ( 1 0 ~ )  

Lo Unfortunately, L(20) L(7* 941 was not PRNM, and so this value F4(s) = 6(0;:6) 

for a had to be discarded. 

Examination of the factors at this point indicated the following possibilities: 

L(20) L(a) &!a L(b) 
L(2000jL(a) Or L(a) L(b) L(2000) 

Empirical numerical studies were conducted varying a and b. Some combinations 
were immediately discarded because the factors were not PRNM. 

Inevaluating the realizability gainfactor K. for some of these transfer functions, t h e e  
1 

form gave odd results; the real part of two of Wl) LWz) 
transfer functions of the 



them had a minimum value at infinite frequency and for the third had the same 
apparent minimum value at two different frequencies. Time did not permit further 
investigation of the reasons for  these peculiar results. One acceptable combina- 

tion was  discarded because the realization of the network required a passive ele- 
ment of impractical size. 

Minimizing the individual KT values was one of the basic criteria throughout. 
- i  

The transfer function for the second network configuration was considered a vast 
improvement over the first. This transfer function is 

and the corresponding network is presented in Figure N-3. Seven ladder stages of 

the first network were reduced to six, giving an - form for F$(s) which required 
a Bott-Duffin synthesis with 15 elements. Although this increased the over-all 
number of network elements to 65 from the previous number of 59, the tremendous 
reduction in over-all gain factor $ to 1736 was considered far more important. 

LL 
Q 

Methods of refinement, which became apparent as these investigations con- 
tinued, led to a further change in  &G fz;~tc:: =fvmn a = 20 to a = 30. This third 
configuration, shown in Figure N-4, has a transfer function given by: 

L(a) -- 

4%)' &yJ &!J L(20) L(30) 'UX /'04) L(500) 
L(4) L(2000) L(30) L(500) L(2000) 

FD(S)*F (3 1 (a) = 

This network has the same number of elements as network 2 (65), but the over-all 
compensation gain factor 5 has been reduced to 700. 
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SECTION V 

SUMMARY AND CONCLUSIONS 

I 

Three constant-resistance ladder networks, that have voltage irander F i ~ t h n a  
meeting the gain-phase compensation requirements set by NASA with an assumed load 
resistance of 800 ohms, have been synthesized. By iteration of the transfer function 
factoring and network synthesis operation, a reasonably practical network configura- 
tion has been realized. This network, presenkd iii F+rc Ti-!, !xis 65 2asRive ele- 

ments in its six cascaded stages. The required over-all compensation gain for it is 
700. The maximum inductor size is 770. G henries and the maximum capacitor size 
is 532 microfarads. 

I 

A schematic of the complete operation in going from the NASA gain-phase com- 
pensation requirements to the final, improved network configuration is given in 
Figure IV-4. The requirements for factoring the desired network transfer function 
so that these component transfer functions can be realized as  stages of a constant 
resistance ladder network are  derived in section U-A anciare b u i u i i i Z T k 2 k  ~czt inn  I!! 

For all realizable forms of these factors, section 111-B describes the synthesis pro- 
cedures to be used for the associated branch impedances (Table 111-1), andsection m- 
B describes the application of these techniques in realizing the desired transfer 
function. The evolution of the ladder compensation network to a more optimum con- 
figuration is described in section IV and illustrated in Figure IV-1. 

From the studies which have been completed, it would seem that further re- 
finements are  possible, starting from the first step of the over-all synthesis opera- 
tion. The curve-fitting procedure should be re-evaluated with the difficulties of 
realization of various types of factors taken into consideration. 

Emphasis should be placed on minimizing the number of quadratic denom- 
inator terms, because generally they must be synthesized by the Bott-Duffin 
technique yielding a network of 15 elements, unless they are  combinable with a 
linear numerator term. The denominator quadratic form was inefficient in the 

I 
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NASA network where the power of the numerator and denominator polynonials were 
the same. However, it could possibly he effectively utilized when such is not the 
case, and it could be more easily synthesized by the continued fraction approach. 

Quadratic form numerator terms should be combined with two linear form 
denominator terms where possible, especially when additional realizability factors 
are introduced by Ki and K 

this form also may be accomplished via the continued fraction method. 

values are more easily optimized. The synthesis Of 
Ti 

Linear term fractions are simple to synthesize and should be combined where 
possible, avoiding large K 
remains to be investigated. 

values. The feasibility of this type of early planning 
Ti 

A satisfactorily effective procedure has been evolved for factoring a given 
transfer function and synthesizing it by a constant resistance ladder network. How- 
ever, additional work in this area could hopefully lead to simpler, more straight- 
forward procedures for realization of a network which is generally optimum in terms 
of its required compensation gain and the number and size of its passive elements. . 
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APPENDIX A 

POSITIVE REAL NON-MINIMUM FUNCTIONS 

A function, F(s), is called positive real (PR) 
if F(s) is real when s is real and if the real part of 

F(s), Re F(s), is non-negative for Re(s) 2 0. This 
definition is equivalent t o  

1) 

2) 

F(j w) has no poles o r  zeros in the 
right half plane, 

any poles o r  zeros of F(j w )  on the 
imaginary axis are simple with a 
real positive residue, 

3) R e F l j w ) z O f o r O ~ o ~  - .  
Two simple PR functions are shown in  Figure A-1. Positive Real 

Function Figure A-1. The (1) curve depicts a P R  function 
with a vanishing real part, termed a positive real, 
minimum resistance function (PRMR). The (2) curve depicts a PR function 
with a non-vanishing real part, termed a positive real, non-minimun function 
(PRNM) . 

Figure A-2 presents the PRNM forms which are needed to apply the 
constant resistance technique. For many transfer functions, a suitable 
grouping of terms yields a product of PRNM terms. Jf this is not possible, the 
simple technique next discussed may be used. 

Suppose the given transfer function is: 

This is not a PRNM function; however, a factor F(s) can be introduced as 

shown: 

A-1 



GW - s + a  0 Ka 
s + a  2 - 2  G(s) 

F(s) = F(s) 
s + 2  { w  7 s + w  rl 

where a is chosen so that (5) of Figure A-2 is satisfied. 

Ip this way any stable transfer function may be realized as a product 
of PRNM functions. Note that while the indivictual stage transfer functions 
must be PRNM, the composite transfer function does not have to be PRNM. 
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Figure A-2. Positive Real, Non-Minimum (PRNM) Forma 
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APPENDIX B 

BOTT-DUFFIN SYNTHESIS OF A BIQUADRATIC IMPEDANCE FUNCTION 

As an example of the Bott-Duffin synthesis prweduzs, zzxider the followillg 
impedance function: 

I 

0.38 s 2 + 66.94 8 + 2394.5 
= 

s2 + 20 s + 400 
03-1 1 

The real part of Zb(s) is obtained from Equation (B-1) as: 

Re %(s) = 2 s 03-21 
2394.5 - 0.38 LO2) (400 - W 2 )  - 1338.8 k? ( 

(400 - s) ' 1- 400 0 

from which it is found that . 

I% %(jM)=OatW=39.82 E L L ) ,  L . (B-3 ) 

Substituting the value obtained in (B-3) into (B-1), it is found that: 

- = 0.01117 farad. 
c1- w j f  

1-1 
03-5) 

From Equations (B-3) and (B-4), w1 5 - = 89.52; substituting this value into Equation 
(lII-76), there obtains: 

2 k3 - 59.4 k + 1589.7 k - 94232 = 0. 03-61 
This then is solved for the positive value of k which is found to be 

ko = 59.3. (B-7 1 

Substituting this value into Equation (B-1): 

Z (ko) = 1.5096. (B-8) 

Substituting (B-7) and (B-8) into Equation (III-55a): 

L2 = - = 0.02546 henry. 
kO 

B-1 



I '  

From Equations (UI-49) and (B-7) and (B-8): 

s + 64.37 s + 1586 

s2 + 1586 -3 R ( s )  = 3.97 

From Equations (B-lo), (111-52), and (III-53): 

1 + 64.37 s + 1586 
s2 + 1586 

z1 = 5.99 

'= 0.38 [." + 1586 
s2 + 64.375 s + 1586 

Using the expansions given in Equations (111-77) and (111-78): 

385.58 

s + 1586 
+ 5.99 - z1 - 2  

-l- 169*29 + 2.63, 
z2 -s2 + 1586 

Hence: z3 = 5.99 

Z4 = 0.38. 

From Equations (II1-79), (111-80), (II1-81), and (UI-82): 

C3 = 0.00259 farad 

L3 = 0.2431 henry 

C4 = 0.1067 farad 

L4 = 0.00591 henry 

From the equations of Figure III-23, the modified elements are: 

= 0.002348 farad 

= 0.2686 henry 

L* = 0.004883 henry 
C* = 0.1291 farad 

cO 

LO 

B-10 

i '  

I 

B-2 



I 

As discussed in Section III, these passive element values correspond to a 
normalized load resistance of 1 ohm. The elements scaled up to account for the 
actual 800-ohm load resistance are as follows: 

C1 = 13.96 

Z3 =4792 
0 

z4 =3M 

co = 2.935 

Lo = 214.9 

- 1 * = 3 - m  

C* = 161.3 

microfarads 

ohms 

-L, - uuua 

microfarads 

henries 

henries 

microfarads 

I 
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